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Stabilization of the Kerr effect by self-induced ionization:
Formation of optical light spatially localized structures
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(Received 12 July 1999

The nonlinear propagation of ultrashort laser pulses launched into the air is investigated. The formation of
optical light “bullets,” or spatially localized structures, has been experimentally observed recently. Their
stability is shown as due to the occurrence of a dynamical balance between two opposite nonlinear effects: an
optical focusing Kerr effect balanced by a defocusing self-induced multiphoton partial ionization of the neutral
gas. Characteristics of the “bullets” are predicted analytically and confirmed numerically. They are found to
be in agreement with observations.

PACS numbs(s): 42.65.Tg, 42.65.J%, 52.35.Mw, 51.7¢.

I. INTRODUCTION IIl. THE EXPERIMENTAL DATA

Let us first summarize typical experimental features: we

Nonlinear propagation of intense laser radiation througrshall use the experimental figures of the LOA group partially
transparent media can generate interesting effects. One pfiblished in[2,12] in the following.
them is the well-known Kerr self-focusing effect leadingto a  The laser facility consists of an optical laser Ti:Sa chain
spatial collapse of the laser beam within a finite self-focusinglelivering ultrashort pulsesr<150 fs) with a moderate en-
distance(hereafter noted. ). A new situation occurs when €rdy (30 mJ, a repetition rate of 20 Hz at a wavelengttof
the cancellation of opposite nonlinear effects may allow a800 nm. Here the pulse beam is merely fired into a long
stable propagation over large distances even when the incgorrdor without any lensing system, its initial radiysbeing
dent laser pulse power is well above the critical one for the?POUt 1 cm. The beam begins first to exhibit self-phase
Kerr self-focusing P.). Indeed, the formation of so-called modulation(SPM) and radius s_hrmkmg typical of a spatial
optical light “bullets” (in the sense of spatially localized gpllapse dL:je o the self-f(()jcgsmg Kf(tarr egect. Ige bi‘]"m ra-
structures and not spatio-temporal solitoieas been ob- lus goes down to around 1qém after about m. Note

served recently in experimerfts—3]. In these measurements that for short pulses the initial powét; could easily over-
. y b ‘ come the Kerr critical poweP.. However, the SPM devel-
well-collimated powerful femtosecond laser pulses wer

' ! . . . eops preferentially in the red side of the laser spectrum and a
fired into the air and were found to collapse into rad'a"ycontinuous self-frequency redshiftitgFs is also seen satu-
finite “filaments” that self-propagate, keeping a stable shap&4iing after a propagation distance of 12—15 m. In a second
over dozens of meters. In another experimpit a light  yegion the formation of a light beam of narrow radial size is
beam was focused into a chamber filled with gas, but thergpserved and found to be stable over a distance of 30-50 m.
filamentation of the laser beam was occurring, preventing itrhe spectrum and intensity ) in this “filament” are then
from a stable propagation. clamped to their value at the location of the filament onset.
In this paper the stability of the bullets is explained with There is no additional averaged blue SFS due to an ioniza-
the help of a simple nonlinear propagation model for thetion front, but now a preferential SPM is present on the blue
light beam. Recent numerical simulations have been perside of the spectrum as compared to the spectrum observed

formed yielding features close to our conclusiofts], in the first Kerr region.
whereas an alternative model using a moving focus has been Typical data are(a) recorded spectra taken at different
put forward[6]. spatial locationgradially integrated over filament siggb)

The beam propagation is considered within two separatéemporal autocorrelation trace, af@l energy measurements.
areas. In a first region only the Kerr effect exists with aln the filament the energl; is found to be about 0.7—-1 mJ,
spatial collapse of the beam radius and self-phase modulathile the radial size'¢ is about 100—15Qum. There is no
tions (SPM’s). In a second region the beam intensity is suf-measured temporal compression inside the filanfeithin
ficient to ionize the air and a plasma is created able to defohe radial and time resolutions
cus the beam and adding a new component to the refractive
index. It is shown, as was noted previously[i, that the
dynamical equilibrium between these two opposite nonlin-
earities leads to the observed spatially stable channels. To explain the experimental features, we intoduce a non-

linear propagation equation. We start from the Maxwell
equation for the electric fiel& of the pulse written as
*Also at Service de Recherche sur les Surfaces et Irradiation de la

Matiere (SRSIM), Centre d’Etudes Nucires de Saclay, 91190 2. 5 — —
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IIl. THE NONLINEAR PROPAGATION EQUATION

1063-651X/2000/6(@)/199610)/$15.00 PRE 61 1996 ©2000 The American Physical Society



PRE 61 STABILIZATION OF THE KERR EFFECT BY SELF. .. 1997

wheren, is the unperturbed refractive index of the mediumJ_ could be radially integrated as in E(Bb) with a given
and on the perturbed one which can depend on the nonlinconvolution profileR to account for finite experimental reso-
early of E. We assume that an envelope approximation iqution.

valid for a pulse with a long duration with respect to the time  To gain more insight into the phase behavior, we shall use
optical period and a typical spatial variation of the pulsetwo simple analytic methods. First, we may integrate directly
electric field longer than the optical wavelength. We shlit  Eq. (2), neglecting the diffraction, and this yields at once
into amplitudeu and phaseb, asE=ue'?, and we average

Eq. (1) over the fast phasé chosen agh=kz— wt. We get d,lu[=0,

a model equation of the nonlinear Sctiimger type for the ,

slowly varying complex amplituda(r,t) as Dy (1,2 g):_f g(|u[2)dz/2k. 4)
0

2ikd,+ A, )+ Tu(r,0)=0, . . .
[(2ikaz+a,)+g(ulH]utr.&) Thus we get a modulus constantzrmnd a phase increasing

linearly with distance, apart from their dependence &md{
that are given by the initial conditions fdu|. We shall sup-
pose here thag is a real function.

As a second method we use the radial paraxial approxi-
mation. We recall that it consists of analyzing the evolution
of the phase and radius of the electric field alawvgthin the
core of the beam. Thus we make a radial expansion into the
" - ~assumed small parameter/(;), r; being the initial beam
erate intensitiegbelow a few 16*W/cn?) [7], these condi- radius atz= 0. The validity of the method requires clearly to

tions are satisfied here. stay in the core of the beam. By this technique we reduce the

We wish to explain what has been observed using & MiNigyiia) partial differential equatioPDE) into two coupled

mal and simple theory. For this purpose we shall drop all the, 44y gifferential equation€ODE’s). Taking the real and

nonlinear _terms that appear to be ir_relevant in the a”al}’s's'imaginary parts of Eq(2), these equations are found to be
Hence in Eq(2) we also neglect higher-order time deriva-

g~2k?[sn(|u[?/ng)]. 2

We have neglected terms indif)? in Eq. (1) and have
changed the time variabténto {=t—2z/Vy, the propagation
variable along the pulsé/y being the pulse group velocity.
The envelope approximation far remains valid even for
short pulsegbut generally longer than 100)fsand at mod-

tives such a$82(9§2 andﬁsaig, respectively, connected with kd Jul?=—[A, @ +Im(g)]|u|?— (3, Pn) ;| ul?,
pulse time compression and pulse broaderigigce none of (53
them are observedy group velocity dispersiofthis point

will be discussed laterAlso crossed time and spatial deriva- 2ka, @ =Re(g) + A [ul?/[ul— (9, P\)%  (BD)

tives are discarded and as well the self-steepening proce

bringing another contribution proportional ted,((uu*)u).
Equation(2) has three terms: the first one describes th . . . ) . .

propagation, the second accounts for possible diffraction, Using a r‘f"d'a' Gaussian trial function as a starting ansatz

and the last term holds the two relevant nonlinearities, her(‘:i‘lnd expanding the.phase to _second orderrim(=r, we

the competiting Kerr effect and the plasma ionization pro-ntroduce three auxiliary functiorfs ¢, andy as

Rfow because of diffraction and possible dissipationyill
ealso depend omz through the radial derivatives.

cess U(r.2,0)=[Uo( )/ (z,) e~ o ZeiPrz0  (p)
A. General considerations D\ (r,2,0)= <PNL(Z,§)+(r2/2)X(Z,§)+ J(rd, (7
There is no available general theoretical tool to analyze
Eq. (2) exactly. However, to proceed analytically we can x(z,0)="1,If. (8
split u itself into a slow modulus and phase assuming an ] ] ] ] ]
initial radial symmetry of the pulse: Expressior(6) is a solution of Eq(4) for uu*, while relation
B (8) is obtained by inserting Eq7) into Eq. (4). Next, by
u(r,o)=2eu(r, e o, equating the coefficients of zeroth- and second-order terms in
ther expansion in both members of E&) using expression
T=(r,2). (6) in g itself expanded im, we obtain two coupled ordinary

equations forf and ¢ as
The recorded specti@d) are the main observed data and the

" 3

nonlinear phase factaby, is one important quantity to de- (2k) T2/ =143 ) -Re(g)l2, ©)
scribe them. , 2¢2
The spectrund,, is defined by (2K)@(n1),= — 2U(r{f*) —Re(g)]o- (10

o 2 With the choice of three initial conditions fdy f’, and for

Jw(r,Z)ZU u(r,z,¢)elle= e en.z0lq s | ® at the boundary=0, we can follow the evolution of the
- radius and phase in the core of the beam alnng
(3a The paraxial approximation applies also to simpler equa-

tions describing mere diffraction in a vacuum, allowing one
to recover the usual Rayleigh diffraction lalgear prob-

— | g2 _
Jw(Z)—f d°rJ,(r.z)R(r=r*). (3D) lem). Normalizing the variables’ =r/r;, z' =z/z,=2kr;?,
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w;=2r;, z, being the Rayleigh Iengthw(wizl)\), and by set-
ting g=0 in Egs.(9) and (10) with the initial conditions
f(z=0)=1, f'(z=0)=0 (parallel beany and ®(z=0)

=0, we find the familiar expressions for a naturally diverg-

ing Gaussian beam as
fr=1/f3, o =-2If?

f=[1+(z/z,)?]"? ®d=arctanz/z,).
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the parametelC) a symetrical initial experimental profile
with a double Gaussian shaperirand { as
u(r,z= Og):uoe—(r/ro)Z/Ze—({/r)2(1+iC)/2. (15)
We see that the frequency shitv would be an antisymetri-
cal function of¢, thus bringing as much redshifand SPM
in the rising front as blueshift in the trailing edge of the
pulse, with a zero self-frequency shisFS (Aw) averaged
over/. If diffraction is included, the analytic dependencezin

In this case the initial spectrum is unchanged with distanceis more difficult to find, but progress can be made using the

but the radius and phase evolved with-or small distances
® varies linearly withz and then saturates.

Now we shall examine the case of the two involved “non-

linearities,” first separately and then together.

B. Kerr region

It is defined as the region of negligible ionization, i.e., of

vanishing plasma corrections to the refractive index.

1. Instantaneous Kerr effect

We rewrite Eq.(2) as

(2ika,+ A, +2k?(ny1)u(T,£)=0. (11)
The usual nonlinear indew, is introduced in Eq(11), and
we need the precise value 0§ to compute thd ¢ distance.
By phase retrieval techniqug8] applied to the recorded
spectra(see alsd9] for air) and using Eq(3), one gets a
good determination of the index as=3X10 °cm?/W.
The Kerr critical poweP. enters as a normalizing factor of

the nonlinear term in Eq.l1l) as
P.=\?/(27n,), (12

P/4=(goC)U2S=1.S, S=nr? with u’=ulu,

I =(egC)uu*,
(idg+A L )+[P(u’|)I(PJHU(T,{)=0. (11)
Here the initial experimental power wasP;

=(30 mJ/150 fsF 200 GWP.=3.4 GW [from Eq. (12
for A=0.8 nm andh, is given abové Thus an initial radial

spatial collapse is expected systematically for short enough

pulses. The Kerr nonlinear phase reads from @j.
z
q)ﬁL(r,z,é):kf ny(r,z’,OI(r,z",§)dz’. (139
0

If the amplitudeu were to remain constant in(i.e., neglect-
ing diffraction effectg, we would recover a phase varying

linearly with z as
Oy =(21Z,)(P; (P J4) (13b

and so would vary the instantaneous frequency <H§E)
defined by
Aw(r,2,§)=—&§®NL. (14)

The phase is modulated sin€ is a function ofZ, and we
choosea priori (aside from a small chirp in time defined by

paraxial method. Applying the paraxial approximations to
Egs.(11) and (11'), we are left with the two coupled ordi-
nary equations

P28 (2,0)=[1-bX(O)JIF?, (16a
3, ®(z,0)=[—2/f?+b?({)]/f?, (16b)
b({)=ui(r=02z=04)/uc.

We recover the power threshoRi=P_ /4 (b=1) by setting
f”=0. With our given initial conditions(f=0, f'=1, ®
=0), we can easily integrate Eq&l6a and (16b):

f={1=[Z/L (D)1}, 17)
sgnt+for b<1, sgn-for b>1,
d=L)[—2+b?{)]argtanfiz/L()] for b>1,
(189
D=L({)[—2+b?%(¢)]arctafiz/L(¢)] for b<1,
(18b)
Ls($) =2 /[|1=b*( O[] (19

L is predicted by relatio19). The 1 in the argument of the
denominator of Eq(19) accounts for diffraction and is neg-
ligible for P; /P >1. Numerically, at the top of the pulse we
find for r;=0.5 cm a valud_4=19m to be compared with
the observed value around 12—-15 m for the collapse of the
beam to a finite radius. Thus at this stage SPM and radial
collapse are recovered as the usual features of a Kerr effect.

2. Noninstantaneous Kerr effect

However, the experiments show a preferential SPM in the
red part of the spectrum, showing an asymmetry with a non-
zero averaged SF8Aw). But this shift is saturating ire
around Ly with a maximum value o Aw)/w=— NI\
=—10/800= —1.25%. The introduction of a noninstanta-
neous Kerr effect brings an explanation. We shall consider
now a modified propagation equation as

[2ikd,+ A, +2K2n,(1)Ju(T;£) =0, (20)

(9g+ Uro)no(1,0) =Nl (1,0)/ 75. (21)

A new parameter appears gs (7/27,), the ratio of pulse
duration to the relaxation constanf. Setting7,=0 allows

us to recover the previous model. The finite corresponds
to a finite time answer for molecular polarization reorienta-
tion after excitation by the pulse. It could be shown that the
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two timesrandr, are of the same ordéhere around 100 fs may alter significantly the spectrum since the phase factor
[9,10]. This last result could be obtained by estimating thevaries rapidly and phase mixing could occur.

rotational constant and the kinetic momenta of the populated

molecular states. Such a “Raman” effect describes the re- 3. Paraxial analysis of the noninstantaneous Kerr effect
laxation of the polarization of the air diatomic molecules

lated by the light pulse | ted ol . q Starting from Eq.(23), we derive two coupled evolution
popu ated by the light pulse into excite egctror_nc an rOta'equa'[ions for the beam radids=[r(z,{)/r;] and phaseb
tional states. Note that for mononuclear diatomic molecule

that are now ordinary integro-differential equations as
such as N and G in air the Raman effect involves neces- y ¢ a

sarily two photons for parity conservation reasons. A formal
solution to Eq.(21) for the indexn,(l) is then given by af,zf(z’,g):4[1/f3(z’,§)—[f(z’,§)/72]

nz(l)(r,z,g’)=(n20/rz)ft e 2 (r 2,0 d¢, »

f g [b2(¢) T4z, ¢)]e ¢ Imdy |,
(22) o

(27)

so that Eq.(20) becomes a nonlinear integrodifferential
equation as ‘
. azr¢(z’,§)=—2/f2+(1/72)f [b2(¢')/f2]e” &= imgy,
. 20 -
(2Ik&z+Al+2k27—2 (28)
t , If the ¢ variation off is comparable to the exponential term
Xf e & &Vm2(r,2,0)d" |u(r,z,0)=0. (23  orif f cannot be factorized as a product of a functioz ahd
o of a function ofZ, then we do need a numerical integration to
solve Egs.(27) and (28). By using a simple Runge-Kutta
fourth-order algorithm, we find thdt varies more slowley
than the exponential term and it can be taken out of the

We analyze again the phage, , taking the same initial
profile given by Eq.(15) without the temporal chirgfC=0.
We see thatb is an asymmetrical function of time bringing

more SPM in the red side of the spectrum. The IFS is nov\;ntegral in £’ However,. this .result is true only for g,mall
globally “redder” than “bluer” with a nonzero averaged red val_ues _of Fhe propagation distanze afterwards_,f varies
SES quickly in time and cannot be taken out of the integral. We

are back to a system such as E@¥a and (16hb) with so-
ri2 lutions like Egs.(17) and (18) modified by substituting for
(5w(r,z))=1/7J Aw(r,z,0)d the functionb a new functionB defined byB2=g,. The
iz self-focusing length i is modified as well, since now
=—[Dy(r,z,7/12) — Dy (F,2,— 7/2)]] T, ,
(248 L () =2 /[|1-B*(O)1* (19)

(Aw) w=(1/2m)(4Py/Ps) (M cT){gk(x,y))(Z/Z,), Also, the power threshold in the paraxial analysis is modified
by the conditionB=1 instead ofb=1 (for P=P_/4).
Using again the profilg15), we get a valueg,(0)=1.4

(g(x,y))=—[91(1/2y)—g1(—1/2y)], [see Eq.(25')] and the minimumL value is now 16 m
instead of 19 m. The reduced radiusence varies according
x={¢lr, y=127,, (25  to Eg. (18), but it is modified by using Eq(25'): thus, f

varies more slowly than the exponential term¢in
x oty s The self-frequency shift computed by Eg6) should also
gl(x,y)=2yJ_mb2(x Je T dx’, be corrected as follows:

For z= L given by Eq.(19), we can predict a SFS depend- (A®)/@=(1/2m)(4Po/P) YA\ cT)(gk(x,Y))[1/g:(0)]*
ing on the pulse power iR for P;/P,>1 since we have (29

(Aw)) w=(1127)(4PyIP )Y NcT){gk(x,y)). (26)  Numerically, the relative SFS A w/w)=—1.19%, closer
than the previous one to the observed value. This is remark-

Using the profile(15), we get for the functiorg, able sincey is not known with an accurate precision and we
have used a rather crude model.
gl(x,y)zyeyzf“‘ Y7 1+ erf(x—y)]. (25 It is interesting to compare the phase and frequency shifts

(IFS,SFS given by the qualitative method and by the
Fory around 1/2 withP;/P.=60, L4=19 m forw;=1cm, paraxial ones.
andz,=392m, we gefAw)/w=—1.41%, in good accor- By using the new phas® as,
dance with the observatidig) = — (0.37/2) () *2]. In fact,
one has to recompute the; value; see the paraxial section ®=[L({)/z, ][ —2+B?(¢)]arctanfiz/L¢({)] for B>1,
below. A radial integration affects poorly the val{ew), but (30
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the qualitative phase given by EL3b) is recovered from as in the paraxial instantaneous Kerr case. The more com-
Eq. (30) as for smallz, ®~z'[ —2+B?({)], while without  plete IFS and SFS expressions are now given by
diffraction ®~z'B?({).

Note that even without any diffraction effect ih and in Aw=— ag(Bz)(Lsf/zr)arctanlﬁz/LSf(g)]+ (SAw),
L the phase is now diverging at L like arctanhg/L ) (313
|
(8Aw)=(—2+B?)[—d,(Ls/z,)][arctantiz/Ls) (£)]— (Z/Ls)/[1— (2/Ls)?]- (31b)

In Egs.(31), for B even,L is also even and the first term of is very wealf, multiple ionization can occur, whereas recom-
the right-hand side that gives again the IFS in the qualitativddination is negligible in cold plasmas in such short times and
analysis has a nonzero averaged SFS. Note the appearanceabfmoderate densities. The only other possible ionization
a singularity atz=L now of the radius, but also of the mechanism(there is no breakdown in the gas on this too
frequency shift in this paraxial approximation. The SFS van-sshort time scalecould be by electron impact ionizatidpri-
ishes forB? even, and it is given by, with the help of Eq. mary electrons could produce secondary electrons by ioniz-
(30), ing collisions. But since cross sections are around ¥@n?
at a maximum pulse energy in,ldnd G for electron impact,
(Aw)lw=((Aw) 0)(—12)—[((Aw)/®)(1/2)], (32)  one can verify that, at low flux and moderate pressure, the
ionization time is much longer than the pulse duration.
((Aw)0)(112) = (lwT)[Ls(1/2)/z] Hence the photoionization process is by far the leading ion-
2 ization mechanism here.

X[ =2+B%(1/2)Jarctanhz/L+(1/2)], We use a notation designed for high intensgyheing an
interaction parameter ratio of the pulse electric field normal-
ized to the Compton electric fielH;; (with a Compton in-
tensityl ), and we write the ionization probabiliti&y; and

((Aw)/ w)=0 for BZ even.

With the choice of Eq(15) for u, B? is asymmetric and Eq.

(32) is diverging atz=L. Also, the intensityl that scales W2 @S

like 1/f2 diverges atz=L: however, this divergence is re- W= |P (333

moved by a finite radial integration since E@) for u is e

power conservative. This kind of singularity looks similar to p=Int(hv/E,),

the one encountered in the approach of the blowup in a the-

oretical analysis of the nonlinear Schiinger equation. W,=aq %9, (33b)
We can conclude that within our simple model the inten-

sity profile at the center of the beam=0) has an “ampli- q=/1Y2 a=4.22p(E,Ih)S e,

fication factor” of the form

d=2%%3pS"2,  S=(E,/m?), ly=goE2,

lo(r=02,0)=1o(r=0z=01)/[1—(Z'ILi(Z",{))?]. P (Ealme oo

) ) ) E=MCwq/e.

Note that just prior and close to the; distance we are at the

filament onset because the energy density becomes stromge number of ionizing photons fs= 10 and 8, respectively,

epough to produce sufficient ionization of the surroundingfor N, and G, with respective first ionization potentil,

airr. around 15.6 and 12 eV since the incoming red photons have

an energy of 1.55 eV. To simplify, we assume a “mean

C. lonization region molecule” with the air mass and choose a mean valup of

To describe the plasma creation, we need first an ioniza-:9 with E,=12eV (because Qis preferentially ionizeyl

tion model, but computation of the multiphotoionization and get a practical formula for the multiphoton ionization

cross section, even for diatomic molecules, with the absorpprOba}lb'“tymzwl. at low flux as Wl:A(I“.S)g’. s
tion of several photons is a very hard task. We have designed 10 Wient* with A=0.1/r. Defining a mean ionization
the following trick to get an order of magnitude of the cross' &€ by

section: we connect the Keldysh formula for ionization a=Wr (34)
with a “modern” preexponential factdrl1] to describe tun-

neling ionization at high flux with a multiphotonic formula at we get an ionization of the order of 10% for a laser flux
low flux, washing out the details of eventual atomic reso-equal tol.

nances. Close SCTUtiny of numerous multiphoton eXperimentS The equation of the Sing|e ionization generating free elec-

teaches us that a good flux to connect both processes couighns with a densityN,, is simply given by(N, being the
be taken around 6 Wwi/cn?. We consider a single ioniza- density of neutrals

tion probability W and photoionization only. At higher flux
(here the initial flux isl = 6x 10'° W/cn? and the ionization 3Ne(r,0)=NoW(r,?), (35
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z
, f T™WdZ = az.

Ne(r,z,g)/N0=1—exp(—J’;W(r,z,g’)dg’ .
(362

. We expect again a low ionization rate. We see in 88b
Ne/NO~J W(r,z,2')dZ' . (36  that unlike the Kerr effect inducing blue or red SPM depend-
—c ing on the temporal loaction within the puléeont or back,
o the plasma brings only positive, i.e., blue, SPM contributions
We shall suppose that only weak ionization occurs and Shat'sincew is positivd with a nonzero averaged SFS. This
use Eq.(36b) later on only. SPM is effectively observed in experiments when the fila-

ment is created since the blue SPM of the spectrum is no-
D. Spectral plasma blueshift due to the ionization front ticeably increased2,12)).

The free electrons liberated by the ionization process gen- We find this SFS by averaging ovgrnd using the quali-
erate a plasma and add a contribution to the refractive indet@tive phase, disregarding diffraction:
én, to be compared to the Kerr contribution from neutrals.
This index reads (Awp) 0= (212CT)(wpnl 0)*(To | B14P)(g,), (393

Snp(T,0) ={1~ (w5 ?)[N(T,0)/No]}*% (373

—1/2
_ 2 2 ’
SN0~ — (2209 [NFDING], (37h (o= |, b o (39D

2 _ 2
wpn=No€”/Moeep . The integral in Eq.(39b) is evaluated by setting condition

(15) as(gp) =3 (m/p)*?erf(p")~3(/p)* for high p (p
=9). Numerically, forP=1 atm,No=23x10*cm 2 a huge
rglative averaged blueshift of the order of 20%/cm is ex-
pected by predicting a value of the ionization ratef the
order of 10 3. However, such a blueshift is not observed in
the experiment under study. But we have completely ignored
the Kerr effect in this section.

The index variationdn, is a nonlinear function of intensity
through Eqs(33)—(37), wp, being the plasma frequency nor-
malized to the neutral density, and we have supposed both
weak ionization and an underdense plagairis transparent
for the wavelength of the incoming infrared liglso that we
can make the approximation

(whd @)= (Ne/No)(wh/20?) <1.

L . . E. Simultaneous Kerr and ionization effects
Due to the refractive indexn,,, a finite IFS appears, which

is given by 1. Propagation equation

, In the region where both nonlinear effects occur, the com-
Awp(r,z,0)= —ﬁgq)ﬁ“_:—kc?gj onp(r,z',)dz, plete envelope propagation equation should be considered,
0 (389 by adding the corresponding refractive indexes as

2 (¢ {2ikd,+ A+ 2K2[nj(1)+ dny(DHu(r,£)=0, (40)
Awp=(k/2)(wpn/a))2(9§JO J: W(r,z',¢")d¢’dz,

n3(1)=na(1)[ 1= Ne(1)/No].

z
Awplw= /2/2chr,',d', 38D
wpl0=(wpn/ )%/ (207) o (rz.0)dz, (38 More explicitly, the new equation for the evolution is

(nZO/TZ)Jg |(r,Z,§')e(£{,)/72d§'><1—0'pTJ£ |P(r,z,§’)d§’>---

2ikd,+ A,+2k?

: u(r,z,)=0. (41
"'—((wpn/w)z(]./Z)O'pr Ip(r,z,g’)dz’)

Here, in fact, the neutral depletion will be weak and will be when these indexes reach the same magnitude. This point is
neglected in the Kerr term since ionization will always re-confirmed by the experiments, but also by numerical studies
main at a very low level. solving the complete EDP’s like Eq$40) and (41) where

We see that the opposite sign of the two refractive indexesolitary wave structures are found and are observed to re-
allows the stabilization of the priori spatial Kerr collapse main stable in the course of their propagat{&nl3]. Also,
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since the group velocities in air and plasma are equal and
opposite in this case, possible pulse broadening effects due
to group velocity dispersiofiGVD) are canceled.

10

2. “Bullet” characteristics

To determine the filament equilibrium, in the radial core
of the pulse, which is dynamical balance for ionization,
which is itself a dynamical process, we write the effective
equality of the nonlinear refractive indexas and n, at a
givenz on average ovef. This procedure provides an equa-
tion for determiningl;, the energy density in the channel.
We find the following results, by assuming a cylindrical
beam:

0.5

<n2(|)>:<5np(|)+nd>v oo 0.05
(42) z

0.10

ng=[1.22\/w;(z)]%/8,
FIG. 1. Radial shrinking of the light beam normalized radius
[on= x,y))/ X 1/4n,) (ol o) 2( Lo, 7)) HP-1). f(z,0) as a function of the propagation distarzcé is taken as the
o={[{gxy)) <gp( Al 2)( pn) ( P h (43) time maximum of the initial pulsez is normalized to the Rayleigh
lengthz, , with parameterg)?=200,A=10"%°, 7,=7,=1, andC

Lo~ (1s/1)[{Q)/ ({(9p)2% 107 1)] =0.

X(N 1) ) PP, (44) Knowing |, the variation of the index is found to be of
) ) o the order of 210 °, while the diffraction index, negligible
We shall further neglect the diffraction contributio. In 5t the beginning of the focusing process, reaches a value of
Eq. (44) we have used the result of E@3a), with p=9, and  the order ofnyg=7x10"7 in the filament fow; = 200.m (at
the definition(15). We then compute the averaged values forZ:Lsf)_ Thus ny remains weak as compared to nonlinear
gk andg, from Egs.(25') and(39b) with y=1/2. We find a  jhgexes.

numerical value of; as|=6-7x10" W/cn?. Using our Also, we can justifya posteriorithat the electron impact
ionization model, we deduce an ionization rateaot1-2 jgnization mechanism gives an effective collision time of the
x10°°, due to the factorI¢/I5)°. Numerical simulations order of a picosecontthe quiver energy associated withis
have confirmed this value of the ionization rafg. of the order of 50 eYfor full (100% ionization and thus is

The dynamics of ionization is very important for short pegligible with respect to photoionization on the femtosec-
pulses because it determines through its nonliigstanta-  ond time scale.

neous intensity dependence the dynamic of the filament. In-

stead, for longer pulses at higher fluxes such as those used
for studies of relativistic self-focusin@RSH, the ionization )
is instantaneous and there is no need to include the ionization 10 be complete we perform a paraxial study to compute
dynamics in the pulse propagation except for a specific treafore accurately the filament radius. We get new coupled

3. Paraxial analysis

ment of ionization fronts. equations forf and ¢:
A quick estimate of the filament radius could be ob-
tained from our knowledge of RSA4] since the beam ra- af,zf(z’,g)

dius could not be smaller than the skin depth defined by
g r
1—f4/72J [b2(Z')f 4le ¢ &gy |§73

)\dZC/wpez(C/wpnallz). (45) =
Knowing | by Eq. (44), we getAgq=70um, not very far 20 zfé 20/ 410§ —2p—274 71 ( a—H
from the observed filament radius. +pci(kpri) ﬂo[b (&Hf ]d{’'(e™ "),
To finish this part we note that the equality of the aver- (46)

aged indexes in the filament implies also an exact cancella-

tion of the corresponding self-frequency shifSFS’s by ¢

definition. Thus there is a frequency shift clamping when the 5, ¢, (2’ ,¢)= — 2/f2+ 1/rzf [bz(g’)/fz]e*(é“é')/Tzdé"
balance of indexes is achieved and the intensity remains also -

fixed. This explained why no additional SFS’s are observed

after the filament onset. In particular, there is no additional

averaged blueshift due to the ionization. However, even with

equality on the average the instantaneous IFS’s do not com- oo 2 [C rn2p o 62010 7

pensate each other, and thanks to the different power laws in Ho(z *5)_01J7w[b (£")/FP]d¢".
IP for n, and inl for n,, we have roughly the relationship

for IFS's: Aw,=—pAwg, with therefore more blue SPM )

than red ondsince herep>1), as is indeed observed. ci=oplp7, kp=Clwpy,.

—ci(kori)4(1—e Moy, (47)
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FIG. 4. Spectral ,(0,z) of u with the same parameters than in
Fig. 3 except thatC=—1. (a) z=0.01 (solid line), (b) z=0.02
FIG. 2. Sensitivity off(z,0) as a function of the propagation (qotted ling, and(c) z=0.03 (dashed ling
distancez for various initial values ofA, the same parameters as

above otherwise. Diffraction would bring another unity term as compared to

the power ratio in Eq(48), as in Eq.(19) for L. The con-

The system of equatiorig6) and(47) has been integrated by dition (48) curiously does not determing or the filament
a fourth-order Runge-Kutta method, keeping tiiegnction in  power P; since we also have the relation
the integrals when required. We do observe the stabilization
in z of the radiusf to a finite value when the intensity in-
creases thanks to the balance of the two nonlinearities. Fig-
ure 1 shows the shrinking of the radius using figures relevant o o ) o
for the experiments presented [ig]. The simple conditon Thus @ compatibility condition is required, yielding

"=0 gives a good estimation of the radius reduction by a
factor of 100 in agreement with the experimental case. Fig- l¢= Pc/2w)\§. (50
ure 2 shows the spatial oscillations of the beam radius for

different values of the initial coefficierh=pci(k,r;)? en- This last relation again gives eithéy or the ionization
tering into the multiphoton ionization nonlinearity. We can ratea. Using Eq.(45), we find the energy into the filament to
notice the great sensitivity dfto the value ofA. be around 0.7—1 mJ. This is about the experimental value,
A more thorough analysis to compute the filament size isgllowing us to check the value &f;=(E;/7). Without time
done by writing at the filament edge=r; the condition compression the result i;=7 GW and r;=2-3\4
dr{/dz=0 (see alsq15]), again neglecting diffraction. This =100-200um, not very far from the rough estimati¢45)

Pi=(mr?l¢). (49)

condition provides the relation and in good agreement with the observations. If we have had
only a mere beam radius reduction, the final poRemould
r=Ag(2P; /P2 (48) had been onlyP; =P(r/ry)?, much weaker tha®;. Co-

operative action between neighboring rays and light concen-
tration due to the nonlinearity involved seems to exist. Also,
1,02 note thatP; is only a few timesP, in the stable filaments.

150

4,02
150
100
100

50

50

A,
Iy}

2

FIG. 3. Spectrd (0,z) in arbitrary units ofu for variousz with -2 2 M
the same parameters as in Fig. 1. In the abscissa we have plotted a
normalized wavelength )\(—)\O)/(A)\),A)\:>\5/27TCT. @ z FIG. 5. Spectrd ,(0,z) of uwith the same parameters as in Fig.

=0.01 (solid line), (b) z=0.02 (dotted ling, and (c) z=0.03 3 except thalC=+1. (a) z=0.01 (solid line), (b) z=0.02 (dotted
(dashed ling line), and(c) z=0.03 (dashed ling
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This could be due to spatial inhomogeneities in the initial 4. Spectral analysis

beam that prevent a larger amount of power from collapsing,

but the presence of hot spots in the initial profile could lead Analytical analysis of spectra has been performed to de-
also to the creation of individual filaments of comparablescribe qualitatively the observed spectral features, and this
intensity that may interact together later on. The filament isstudy will be published elsewhere. Here we limit ourselves
observed to be stable over more than 30 m, but it ends bto presenting results of a numerical analysis consisting of
disappearing due to energy ionization losses and, to a lesssolving Eqs.(46) and(47) for the radius and phase and then
extent, due to the energy it radiates; 4@¢l6| for more  computing the spectrd given by expressioii3). A numeri-
details about light conical emission by a Cherenkov effecital Fourier transform of the spectra is performed, with the

from an antiguidelike structure. use of the definition$6)—(8) for the profileu:
|
+ 2
Jw(r,Z): J [Uo(g)/f(z,g)]e_(r/rof )2/2ei[(w—wo){-%—(,DNL(Z,()+(r2/2)f£/f(2,§)]d§ , (5159
|
+oo o 002t ony (2.0)] 2 tion of light spatially localized structures into air that are
J,(02)= Jlm [Uo({)/f(z,¢)]ettewoementaelidg) initiated by ultrashort and powerful laser pulses. These struc-

(51b) tures have been experimentally demonstrated. We have used
a rather simple model capable of describing qualitatively and
Here we restrict ourselves to the central part of the beanguantitatively the filament characteristics. Improved models
computingJ,(0,z) without the need to account for radial have to be developed in the future to make a comparison to
convolution. Using the initial data profile given by Ed.5) numerical code$17,1§, in particular to include group ve-
for u, we obtain in Figs. 3-5, respectively, the spectra afocity dispersion effectqwhen usefyl and to understand
different values ofz corresponding to different radius loca- possible substructures in filaments that may be probed in
tions in Fig. 1, each one for three different values of thefiner experiments. Above all, temporal aspects of beam evo-
initial time chirp paramete€. lution also have to be adressed, since theory indicates pulse
Figure 3 is of the no chirp case, while Figs. 4 and 5 aretime splitting[19] and a possible time compression of a fac-

obtained with a finite temporal chirp. In all cases one sees ator of 2 within the filamen{20].
increase of the redshifting of the central peak wathnd the
growing of the self-phase modulation in the blue part of the
spectrum as predicted and in qualitative agreement with the ACKNOWLEDGMENTS
observations. We have checked also the increase of the cen-

tral peak redshift with an increase of the parameyer T.L. acknowledges useful discussions that initiated and
= (7/27,). motivated this work and access to the experimental data of
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In conclusion, we have given an explanation, relying on aFranco, G. Grillon, R. Lange, E. Nibbering, B. Prade, and J.
simple analytic theory, for the formation and stable propagaF. Ripoche.
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