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Stabilization of the Kerr effect by self-induced ionization:
Formation of optical light spatially localized structures

Thierry Lehner and Nicole Auby*
Laboratoire de Physique des Milieux Ionise´s (PMI), CNRS UMR No. 7648, Ecole Polytechnique, 91128 Palaiseau Cedex, Franc

~Received 12 July 1999!

The nonlinear propagation of ultrashort laser pulses launched into the air is investigated. The formation of
optical light ‘‘bullets,’’ or spatially localized structures, has been experimentally observed recently. Their
stability is shown as due to the occurrence of a dynamical balance between two opposite nonlinear effects: an
optical focusing Kerr effect balanced by a defocusing self-induced multiphoton partial ionization of the neutral
gas. Characteristics of the ‘‘bullets’’ are predicted analytically and confirmed numerically. They are found to
be in agreement with observations.

PACS number~s!: 42.65.Tg, 42.65.Jx, 52.35.Mw, 51.70.1f
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I. INTRODUCTION

Nonlinear propagation of intense laser radiation throu
transparent media can generate interesting effects. On
them is the well-known Kerr self-focusing effect leading to
spatial collapse of the laser beam within a finite self-focus
distance~hereafter notedLsf!. A new situation occurs when
the cancellation of opposite nonlinear effects may allow
stable propagation over large distances even when the
dent laser pulse power is well above the critical one for
Kerr self-focusing (Pc). Indeed, the formation of so-calle
optical light ‘‘bullets’’ ~in the sense of spatially localize
structures and not spatio-temporal solitons! has been ob-
served recently in experiments@1–3#. In these measuremen
well-collimated powerful femtosecond laser pulses w
fired into the air and were found to collapse into radia
finite ‘‘filaments’’ that self-propagate, keeping a stable sha
over dozens of meters. In another experiment@4# a light
beam was focused into a chamber filled with gas, but th
filamentation of the laser beam was occurring, preventin
from a stable propagation.

In this paper the stability of the bullets is explained w
the help of a simple nonlinear propagation model for
light beam. Recent numerical simulations have been p
formed yielding features close to our conclusions@5#,
whereas an alternative model using a moving focus has b
put forward@6#.

The beam propagation is considered within two sepa
areas. In a first region only the Kerr effect exists with
spatial collapse of the beam radius and self-phase mod
tions ~SPM’s!. In a second region the beam intensity is s
ficient to ionize the air and a plasma is created able to d
cus the beam and adding a new component to the refrac
index. It is shown, as was noted previously in@1#, that the
dynamical equilibrium between these two opposite non
earities leads to the observed spatially stable channels.

*Also at Service de Recherche sur les Surfaces et Irradiation d
Matière ~SRSIM!, Centre d’Etudes Nucle´aires de Saclay, 91190
Gif-sur-Yvette Cedex, France.
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II. THE EXPERIMENTAL DATA

Let us first summarize typical experimental features:
shall use the experimental figures of the LOA group partia
published in@2,12# in the following.

The laser facility consists of an optical laser Ti:Sa cha
delivering ultrashort pulses (t,150 fs) with a moderate en
ergy ~30 mJ!, a repetition rate of 20 Hz at a wavelengthl of
800 nm. Here the pulse beam is merely fired into a lo
corridor without any lensing system, its initial radiusr i being
about 1 cm. The beam begins first to exhibit self-pha
modulation~SPM! and radius shrinking typical of a spatia
collapse due to the self-focusing Kerr effect. The beam
dius goes down to around 100mm after about 10 m. Note
that for short pulses the initial powerPi could easily over-
come the Kerr critical powerPc . However, the SPM devel
ops preferentially in the red side of the laser spectrum an
continuous self-frequency redshifting~SFS! is also seen satu
rating after a propagation distance of 12–15 m. In a sec
region the formation of a light beam of narrow radial size
observed and found to be stable over a distance of 30–5
The spectrum and intensity (I f) in this ‘‘filament’’ are then
clamped to their value at the location of the filament ons
There is no additional averaged blue SFS due to an ion
tion front, but now a preferential SPM is present on the b
side of the spectrum as compared to the spectrum obse
in the first Kerr region.

Typical data are~a! recorded spectra taken at differe
spatial locations~radially integrated over filament size!, ~b!
temporal autocorrelation trace, and~c! energy measurements
In the filament the energyEf is found to be about 0.7–1 mJ
while the radial sizer f is about 100–150mm. There is no
measured temporal compression inside the filament~within
the radial and time resolutions!.

III. THE NONLINEAR PROPAGATION EQUATION

To explain the experimental features, we intoduce a n
linear propagation equation. We start from the Maxw
equation for the electric fieldE of the pulse written as

~D2] t2
2 /c2!~n01dn!2Ē~ r̄ ,t !50̄, ~1!

la
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PRE 61 1997STABILIZATION OF THE KERR EFFECT BY SELF- . . .
wheren0 is the unperturbed refractive index of the mediu
and dn the perturbed one which can depend on the non
early of E. We assume that an envelope approximation
valid for a pulse with a long duration with respect to the tim
optical period and a typical spatial variation of the pu
electric field longer than the optical wavelength. We splitE

into amplitudeu and phaseF, asĒ5ūeif, and we average
Eq. ~1! over the fast phasef chosen asf5kz2vt. We get
a model equation of the nonlinear Schro¨dinger type for the
slowly varying complex amplitudeū( r̄ ,t) as

@~2ik]z1D'!1g~ uuu2!#ū~ r̄ ,z!50̄,

g'2k2@dn~ uuu2/n0!#. ~2!

We have neglected terms in (dn)2 in Eq. ~1! and have
changed the time variablet into z5t2z/Vg , the propagation
variable along the pulse,Vg being the pulse group velocity
The envelope approximation foru remains valid even for
short pulses~but generally longer than 100 fs!, and at mod-
erate intensities~below a few 1014W/cm2! @7#, these condi-
tions are satisfied here.

We wish to explain what has been observed using a m
mal and simple theory. For this purpose we shall drop all
nonlinear terms that appear to be irrelevant in the analys

Hence in Eq.~2! we also neglect higher-order time deriv
tives such asb2]z2

2 andb3]z3
3 , respectively, connected wit

pulse time compression and pulse broadening~since none of
them are observed! by group velocity dispersion~this point
will be discussed later!. Also crossed time and spatial deriv
tives are discarded and as well the self-steepening pro
bringing another contribution proportional to2]z„(uu* )u….

Equation~2! has three terms: the first one describes
propagation, the second accounts for possible diffract
and the last term holds the two relevant nonlinearities, h
the competiting Kerr effect and the plasma ionization p
cess.

A. General considerations

There is no available general theoretical tool to anal
Eq. ~2! exactly. However, to proceed analytically we c
split u itself into a slow modulus and phase assuming
initial radial symmetry of the pulse:

ū~ r̄ ,z!5êu~ r̄ ,z!eiFNL~ r̄ ,z!.

r̄ 5~r ,z!.

The recorded spectra~J! are the main observed data and t
nonlinear phase factorFNL is one important quantity to de
scribe them.
The spectrumJv is defined by

Jv~r ,z!5U E
2`

1`

u~r ,z,z!ei @~v2v0!z1FNL~r ,z,z!#dzU2

,

~3a!

Jv~z!5E d2r Jv~r ,z!R~r 2r * !. ~3b!
-
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Jv could be radially integrated as in Eq.~3b! with a given
convolution profileR to account for finite experimental reso
lution.

To gain more insight into the phase behavior, we shall
two simple analytic methods. First, we may integrate direc
Eq. ~2!, neglecting the diffraction, and this yields at once

]zuuu50,

FNL~r ,z,z!52E
0

z

g~ uuu2!dz/2k. ~4!

Thus we get a modulus constant inz and a phase increasin
linearly with distance, apart from their dependence inr andz
that are given by the initial conditions foruuu. We shall sup-
pose here thatg is a real function.

As a second method we use the radial paraxial appr
mation. We recall that it consists of analyzing the evoluti
of the phase and radius of the electric field alongz within the
core of the beam. Thus we make a radial expansion into
assumed small parameter (r /r i), r i being the initial beam
radius atz50. The validity of the method requires clearly t
stay in the core of the beam. By this technique we reduce
initial partial differential equation~PDE! into two coupled
ordinary differential equations~ODE’s!. Taking the real and
imaginary parts of Eq.~2!, these equations are found to be

k]zuuu252@D rr FNL1Im~g!#uuu22~] rFNL!] r uuu2,
~5a!

2k]zFNL5Re~g!1D rr uuu2/uuu2~] rFNL!2. ~5b!

Now because of diffraction and possible dissipation,u will
also depend onz through the radial derivatives.

Using a radial Gaussian trial function as a starting ans
and expanding the phase to second order in (r /r i)5r , we
introduce three auxiliary functionsf, w, andx as

u~r ,z,z!5@u0~z!/ f ~z,z!#e2~r /r 0f !2/2eiFNL~r ,z,z!, ~6!

FNL~r ,z,z!5wNL~z,z!1~r 2/2!x~z,z!1q~r 4!, ~7!

x~z,z!5 f z8/ f . ~8!

Expression~6! is a solution of Eq.~4! for uu* , while relation
~8! is obtained by inserting Eq.~7! into Eq. ~4!. Next, by
equating the coefficients of zeroth- and second-order term
the r expansion in both members of Eq.~5! using expression
~6! in g itself expanded inr, we obtain two coupled ordinary
equations forf andw as

~2k! f z29 / f 51/~r i
3f 4!2Re~g!ur 2, ~9!

~2k!w~nl !z8 522/~r i
2f 2!2Re~g!u0 . ~10!

With the choice of three initial conditions forf, f 8, and for
F at the boundaryz50, we can follow the evolution of the
radius and phase in the core of the beam alongz.

The paraxial approximation applies also to simpler eq
tions describing mere diffraction in a vacuum, allowing o
to recover the usual Rayleigh diffraction laws~linear prob-
lem!. Normalizing the variablesr 85r /r i , z85z/zr52kri

2,
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1998 PRE 61THIERRY LEHNER AND NICOLE AUBY
wi52r i , zr being the Rayleigh length (pwi
2/l), and by set-

ting g50 in Eqs. ~9! and ~10! with the initial conditions
f (z50)51, f 8(z50)50 ~parallel beam!, and F(z50)
50, we find the familiar expressions for a naturally diver
ing Gaussian beam as

f 951/f 3, w8522/f 2,

f 5@11~z/zr !
2#1/2, F5arctan~z/zr !.

In this case the initial spectrum is unchanged with distan
but the radius and phase evolved withz. For small distances
F varies linearly withz and then saturates.

Now we shall examine the case of the two involved ‘‘no
linearities,’’ first separately and then together.

B. Kerr region

It is defined as the region of negligible ionization, i.e.,
vanishing plasma corrections to the refractive index.

1. Instantaneous Kerr effect

We rewrite Eq.~2! as

„2ik]z1D'12k2~n2I !…u~ r̄ ,z!50. ~11!

The usual nonlinear indexn2 is introduced in Eq.~11!, and
we need the precise value ofn2 to compute theLsf distance.
By phase retrieval techniques@8# applied to the recorded
spectra~see also@9# for air! and using Eq.~3!, one gets a
good determination of the index asn253310219cm2/W.
The Kerr critical powerPc enters as a normalizing factor o
the nonlinear term in Eq.~11! as

Pc5l2/~2pn2!, ~12!

Pc/45~«0c!uc
2S5I cS, S5pr 1

2, with u85u/uc,

I 5~«0c!uu* ,

~ i ]z81D'8!1@P~ uu8u2!/~Pc/4!#ū8~ r̄ ,z!50. ~118!

Here the initial experimental power was Pi
5(30 mJ/150 fs)5200 GW@Pc53.4 GW @from Eq. ~12!
for l50.8 nm andn2 is given above#. Thus an initial radial
spatial collapse is expected systematically for short eno
pulses. The Kerr nonlinear phase reads from Eq.~4!

FNL
K ~r ,z,z!5kE

0

z

n2~r ,z8,z!I ~r ,z8,z!dz8. ~13a!

If the amplitudeu were to remain constant inz ~i.e., neglect-
ing diffraction effects!, we would recover a phase varyin
linearly with z as

FNL5~z/zr !~Pi /~Pc/4! ~13b!

and so would vary the instantaneous frequency shift~ISF!
defined by

Dv~r ,z,z!52]zFNL . ~14!

The phase is modulated sincePi is a function ofz, and we
choosea priori ~aside from a small chirp in time defined b
-

e,

h

the parameterC! a symetrical initial experimental profile
with a double Gaussian shape inr andz as

u~r ,z50,z!5u0e2~r /r 0!2/2e2~z/r !2~11 iC !/2. ~15!

We see that the frequency shiftDv would be an antisymetri-
cal function ofz, thus bringing as much redshift~and SPM!
in the rising front as blueshift in the trailing edge of th
pulse, with a zero self-frequency shift~SFS! ^Dv& averaged
overz. If diffraction is included, the analytic dependence inz
is more difficult to find, but progress can be made using
paraxial method. Applying the paraxial approximations
Eqs. ~11! and ~118!, we are left with the two coupled ordi
nary equations

]2
z82f ~z,z!5@12b2~z!#/ f 3, ~16a!

]z8F~z,z!5@22/f 21b2~z!#/ f 2, ~16b!

b~z!5ui~r 50,z50,z!/uc .

We recover the power thresholdP5Pc/4 (b51) by setting
f 950. With our given initial conditions~f 50, f 851, F
50!, we can easily integrate Eqs.~16a! and ~16b!:

f 5$16@z/Ls f~z!#2%1/2, ~17!

sgn1for b,1, sgn2for b.1,

F5Lsf~z!@221b2~z!#arg tanh@z/Lsf~z!# for b.1,
~18a!

F5Lsf~z!@221b2~z!#arctan@z/Lsf~z!# for b,1,
~18b!

Lsf~z!5zr /@ u12b2~z!u#1/2. ~19!

Lsf is predicted by relation~19!. The 1 in the argument of the
denominator of Eq.~19! accounts for diffraction and is neg
ligible for Pi /Pc@1. Numerically, at the top of the pulse w
find for r i50.5 cm a valueLsf519 m to be compared with
the observed value around 12–15 m for the collapse of
beam to a finite radius. Thus at this stage SPM and ra
collapse are recovered as the usual features of a Kerr ef

2. Noninstantaneous Kerr effect

However, the experiments show a preferential SPM in
red part of the spectrum, showing an asymmetry with a n
zero averaged SFŜDv&. But this shift is saturating inz
around Lsf with a maximum value of̂ Dv&/v52dl/l
5210/800521.25%. The introduction of a noninstanta
neous Kerr effect brings an explanation. We shall consi
now a modified propagation equation as

@2ik]z1D'12k2n2~ I !#u~ r̄ ,z!50, ~20!

~]z11/t2!n2~ r̄ ,z!5n20I ~ r̄ ,z!/t2 . ~21!

A new parameter appears asy5(t/2t2), the ratio of pulse
duration to the relaxation constantt2 . Settingt250 allows
us to recover the previous model. The finitet2 corresponds
to a finite time answer for molecular polarization reorien
tion after excitation by the pulse. It could be shown that t
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two timest andt2 are of the same order~here around 100 fs!
@9,10#. This last result could be obtained by estimating t
rotational constant and the kinetic momenta of the popula
molecular states. Such a ‘‘Raman’’ effect describes the
laxation of the polarization of the air diatomic molecul
populated by the light pulse into excited electronic and ro
tional states. Note that for mononuclear diatomic molecu
such as N2 and O2 in air the Raman effect involves nece
sarily two photons for parity conservation reasons. A form
solution to Eq.~21! for the indexn2(I ) is then given by

n2~ I !~r ,z,z!5~n20/t2!E
2`

t

e2~z2z8!/t2I ~r ,z,z8!dz8,

~22!

so that Eq. ~20! becomes a nonlinear integrodifferenti
equation as

S 2ik]z1D'12k2
n20

t2

3E
2`

t

e2~z2z8!/t2I ~r ,z,z8!dz8D u~r ,z,z!50. ~23!

We analyze again the phaseFNL , taking the same initial
profile given by Eq.~15! without the temporal chirpC50.
We see thatF is an asymmetrical function of time bringin
more SPM in the red side of the spectrum. The IFS is n
globally ‘‘redder’’ than ‘‘bluer’’ with a nonzero averaged re
SFS

^dv~r ,z!&51/tE
2r /2

r /2

Dv~r ,z,z!dz

52@FNL~r ,z,t/2!2FNL~r ,z,2t/2!#/t,

~24a!

^Dv&/v5~1/2p!~4P0 /Pc!~l/ct!^gK~x,y!&~z/zr !,
~24b!

^gK~x,y!&52@g1~1/2,y!2g1~21/2,y!#,

x5z/t, y5t/2t2 , ~25!

g1~x,y!52yE
2`

x

b2~x8!e22y~x2x8!dx8.

For z5Lsf given by Eq.~19!, we can predict a SFS depen
ing on the pulse power inP1/2 for Pi /Pc@1 since we have

^Dv1&/v5~1/2p!~4P0 /Pc!
1/2~l/ct!^gK~x,y!&. ~26!

Using the profile~15!, we get for the functiong1

g1~x,y!5yey2/422xyp1/2@11erf~x2y!#. ~258!

For y around 1/2 withPi /Pc560, Lsf519 m for wi51 cm,
and zr5392 m, we get̂ Dv&/v521.41%, in good accor-
dance with the observation@^g&52(0.37/2)(p)1/2#. In fact,
one has to recompute theLsf value; see the paraxial sectio
below. A radial integration affects poorly the value^Dv&, but
e
d
-

-
s

l

w

may alter significantly the spectrum since the phase fa
varies rapidly and phase mixing could occur.

3. Paraxial analysis of the noninstantaneous Kerr effect

Starting from Eq.~23!, we derive two coupled evolution
equations for the beam radiusf 5@r (z,z)/r i # and phaseF
that are now ordinary integro-differential equations as

]z82
2 f ~z8,z!54F1/f 3~z8,z!2@ f ~z8,z!/t2#

3S E
2`

z

@b2~z8!/ f 4~z8,z8!#e2~z2z8!/t2dz8G ,
~27!

]z8F~z8,z!522/f 21~1/t2!E
2`

z

@b2~z8!/ f 2#e2~z2z8!/t2dz8.

~28!

If the z variation of f is comparable to the exponential ter
or if f cannot be factorized as a product of a function ofz and
of a function ofz, then we do need a numerical integration
solve Eqs.~27! and ~28!. By using a simple Runge-Kutta
fourth-order algorithm, we find thatf varies more slowley
than the exponential term and it can be taken out of
integral in z8. However, this result is true only for sma
values of the propagation distancez: afterwards,f varies
quickly in time and cannot be taken out of the integral. W
are back to a system such as Eqs.~16a! and ~16b! with so-
lutions like Eqs.~17! and ~18! modified by substituting for
the functionb a new functionB defined byB25g1 . The
self-focusing lengthLsf is modified as well, since now

Lsf
~8!~z !5zr /@ u12B2~z!u#1/2. ~198!

Also, the power threshold in the paraxial analysis is modifi
by the conditionB51 instead ofb51 ~for P5Pc/4!.

Using again the profile~15!, we get a valueg1(0)51.4
@see Eq.~258!# and the minimumLsf value is now 16 m
instead of 19 m. The reduced radiusf hence varies according
to Eq. ~18!, but it is modified by using Eq.~258!: thus, f
varies more slowly than the exponential term inz.

The self-frequency shift computed by Eq.~26! should also
be corrected as follows:

^Dv&/v'~1/2p!~4P0 /Pr !
1/2~l/ct!^gK~x,y!&@1/g1~0!#1/2.

~29!

Numerically, the relative SFS iŝDv/v&521.19%, closer
than the previous one to the observed value. This is rem
able sincey is not known with an accurate precision and w
have used a rather crude model.

It is interesting to compare the phase and frequency sh
~IFS,SFS! given by the qualitative method and by th
paraxial ones.

By using the new phaseF as,

F5@Lsf~z!/zr #@221B2~z!#arctanh@z/Lsf~z!# for B.1,
~30!
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the qualitative phase given by Eq.~13b! is recovered from
Eq. ~30! as for smallz, F'z8@221B2(z)#, while without
diffraction F'z8B2(z).

Note that even without any diffraction effect inF and in
Lsf the phase is now diverging atz5Lsf like arctanh(z/Lsf)
f
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as in the paraxial instantaneous Kerr case. The more c
plete IFS and SFS expressions are now given by

Dv52]z~B2!~Lsf /zr !arctanh@z/Lsf~z!#1~dDv!,
~31a!
~dDv!5~221B2!@2]z~Lsf /zr !#@arctanh~z/Lsf!~z!#2~z/Lsf!/@12~z/Lsf!
2#. ~31b!
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In Eqs.~31!, for B even,Lsf is also even and the first term o
the right-hand side that gives again the IFS in the qualita
analysis has a nonzero averaged SFS. Note the appearan
a singularity atz5Lsf now of the radius, but also of th
frequency shift in this paraxial approximation. The SFS va
ishes forB2 even, and it is given by, with the help of Eq
~30!,

^Dv&/v5~^Dv&/v!~21/2!2@~^Dv&/v!~1/2!#, ~32!

~^Dv&/v!~1/2!5~1/vt!@Lsf~1/2!/zr #

3@221B2~1/2!#arctanh@z/Lsf~1/2!#,

~^Dv&/v!50 for B2 even.

With the choice of Eq.~15! for u, B2 is asymmetric and Eq
~32! is diverging atz5Lsf . Also, the intensityI that scales
like 1/f 2 diverges atz5Lsf : however, this divergence is re
moved by a finite radial integration since Eq.~6! for u is
power conservative. This kind of singularity looks similar
the one encountered in the approach of the blowup in a
oretical analysis of the nonlinear Schro¨dinger equation.

We can conclude that within our simple model the inte
sity profile at the center of the beam (r 50) has an ‘‘ampli-
fication factor’’ of the form

I 0~r 50,z,z!5I 0~r 50,z50,t !/@12„z8/Lsf8 ~z8,z!…2#.

Note that just prior and close to theLsf distance we are at th
filament onset because the energy density becomes s
enough to produce sufficient ionization of the surround
air.

C. Ionization region

To describe the plasma creation, we need first an ion
tion model, but computation of the multiphotoionizatio
cross section, even for diatomic molecules, with the abso
tion of several photons is a very hard task. We have desig
the following trick to get an order of magnitude of the cro
section: we connect the Keldysh formula for ionizati
with a ‘‘modern’’ preexponential factor@11# to describe tun-
neling ionization at high flux with a multiphotonic formula a
low flux, washing out the details of eventual atomic res
nances. Close scrutiny of numerous multiphoton experime
teaches us that a good flux to connect both processes c
be taken around 1014 W/cm2. We consider a single ioniza
tion probability W and photoionization only. At higher flux
~here the initial flux isI 5631010 W/cm2 and the ionization
e
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is very weak!, multiple ionization can occur, whereas recom
bination is negligible in cold plasmas in such short times a
at moderate densities. The only other possible ionizat
mechanism~there is no breakdown in the gas on this t
short time scale! could be by electron impact ionization~pri-
mary electrons could produce secondary electrons by io
ing collisions!. But since cross sections are around 10216cm2

at a maximum pulse energy in N2 and O2 for electron impact,
one can verify that, at low flux and moderate pressure,
ionization time is much longer than the pulse duratio
Hence the photoionization process is by far the leading i
ization mechanism here.

We use a notation designed for high intensity,q being an
interaction parameter ratio of the pulse electric field norm
ized to the Compton electric fieldEct ~with a Compton in-
tensityI ct!, and we write the ionization probabilitiesW1 and
W2 as

W15spI p, ~33a!

p5Int~hv/Ea!,

W25aq1/2e2d/q, ~33b!

q5~ I /I ct!
1/2, a54.23/2p~Ea /\!S1/2/e,

d523/2/3pS1/2, S5~Ea /mec
2!, I ct5«0Ect

2 ,

Ect5mecv0 /e.

The number of ionizing photons isp510 and 8, respectively
for N2 and O2 with respective first ionization potentialEa
around 15.6 and 12 eV since the incoming red photons h
an energy of 1.55 eV. To simplify, we assume a ‘‘me
molecule’’ with the air mass and choose a mean value op
59 with Ea512 eV ~because O2 is preferentially ionized!
and get a practical formula for the multiphoton ionizatio
probability W1 at low flux as W15A(I /I s)

9, I s
51014 W/cm2 with A50.1/t. Defining a mean ionization
rate by

a5Wt ~34!

we get an ionization of the order of 10% for a laser fl
equal toI s .

The equation of the single ionization generating free el
trons with a densityNe is simply given by~N0 being the
density of neutrals!

]zNe~ r̄ ,z!5N0W~ r̄ ,z!, ~35!
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Ne~r ,z,z!/N0512expS 2E
2`

t

W~r ,z,z8!dz8D ,

~36a!

Ne /N0'E
2`

t

W~r ,z,z8!dz8. ~36b!

We shall suppose that only weak ionization occurs and s
use Eq.~36b! later on only.

D. Spectral plasma blueshift due to the ionization front

The free electrons liberated by the ionization process g
erate a plasma and add a contribution to the refractive in
dnp to be compared to the Kerr contribution from neutra
This index reads

dnp~ r̄ ,z!5$12~vpn
2 /v2!@Ne~ r̄ ,z!/N0#%1/2, ~37a!

dnp~ r̄ ,z!'2~vpn
2 /2v2!@Ne~ r̄ ,z!/N0#, ~37b!

vpn
2 5N0e2/m0ee0 .

The index variationdnp is a nonlinear function of intensity
through Eqs.~33!–~37!, vpn being the plasma frequency no
malized to the neutral density, and we have supposed bo
weak ionization and an underdense plasma~air is transparent
for the wavelength of the incoming infrared light! so that we
can make the approximation

~vpe
2 /v2!5~Ne /N0!~vpn

2 /2v2!!1.

Due to the refractive indexdnp , a finite IFS appears, which
is given by

DvP~r ,z,z!52]zFNL
p 52k]zE

0

z

dnp~r ,z8,z!dz8,

~38a!

DvP5~k/2!~vpn /v!2]zE
0

zE
2`

z

W~r ,z8,z8!dz8dz8,

DvP /v5~vpn /v!2/~2ct!E
0

z

tW~r ,z8,z!dz8, ~38b!
be
e-

xe
ll

n-
ex
.

a

E
0

z

tWdz8'az.

We expect again a low ionization rate. We see in Eq.~38b!
that unlike the Kerr effect inducing blue or red SPM depen
ing on the temporal loaction within the pulse~front or back!,
the plasma brings only positive, i.e., blue, SPM contributio
~since W is positive! with a nonzero averaged SFS. Th
SPM is effectively observed in experiments when the fi
ment is created since the blue SPM of the spectrum is
ticeably increased~@2,12#!.

We find this SFS by averaging overz and using the quali-
tative phase, disregarding diffraction:

^Dvp&/v5~z/2ct!~vpn /v!2~tspI c
p/4p!^gp&, ~39a!

^gp&5E
21/2

21/2

b2p~x8!dx8. ~39b!

The integral in Eq.~39b! is evaluated by setting conditio
~15! as ^gp&5 1

2 (p/p)1/2erf(p1/2)' 1
2 (p/p)1/2 for high p (p

59). Numerically, forP51 atm,N05331019cm23 a huge
relative averaged blueshift of the order of 20%/cm is e
pected by predicting a value of the ionization ratea of the
order of 1023. However, such a blueshift is not observed
the experiment under study. But we have completely igno
the Kerr effect in this section.

E. Simultaneous Kerr and ionization effects

1. Propagation equation

In the region where both nonlinear effects occur, the co
plete envelope propagation equation should be conside
by adding the corresponding refractive indexes as

$2ik]z1D212k2@n28~ I !1dnp~ I !#%u~ r̄ ,z!50, ~40!

n28~ I !5n2~ I !@12Ne~ I !/N0#.

More explicitly, the new equation for theu evolution is
5 2ik]z1D212k2S ~n20/t2!E
2`

z

I ~r ,z,z8!e2~z2z8!/t2dz8D S 12sptE
2`

z

I p~r ,z,z8!dz8D¯
¯2S ~vpn /v!2~1/2!sptE

2`

z

I p~r ,z,z8!dz8D 6 u~r ,z,z!50. ~41!
int is
ies

re-
Here, in fact, the neutral depletion will be weak and will
neglected in the Kerr term since ionization will always r
main at a very low level.

We see that the opposite sign of the two refractive inde
allows the stabilization of thea priori spatial Kerr collapse
s

when these indexes reach the same magnitude. This po
confirmed by the experiments, but also by numerical stud
solving the complete EDP’s like Eqs.~40! and ~41! where
solitary wave structures are found and are observed to
main stable in the course of their propagation@5,13#. Also,
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since the group velocities in air and plasma are equal
opposite in this case, possible pulse broadening effects
to group velocity dispersion~GVD! are canceled.

2. ‘‘Bullet’’ characteristics

To determine the filament equilibrium, in the radial co
of the pulse, which is dynamical balance for ionizatio
which is itself a dynamical process, we write the effecti
equality of the nonlinear refractive indexesn2 anddnp at a
givenz on average overz. This procedure provides an equ
tion for determiningI f , the energy density in the channe
We find the following results, by assuming a cylindric
beam:

^n2~ I !&5^dnp~ I !1nd&,
~42!

nd'@1.22l/wi~z!#2/8p,

I f 05$@^gk~x,y!&/^gp~x!&#~1/4n2!~v/vpn!
2~1/spt!%1/~p21!,

~43!

I f 0'I s$~ I s /I c!@^gk&/~^gp&231021!#

3~l/pr i !
2~v/vpn!

2%1/~p21!. ~44!

We shall further neglect the diffraction contributionnd . In
Eq. ~44! we have used the result of Eq.~33a!, with p59, and
the definition~15!. We then compute the averaged values
gk andgp from Eqs.~258! and~39b! with y51/2. We find a
numerical value ofI f as I f56 – 731013 W/cm2. Using our
ionization model, we deduce an ionization rate ofa51 – 2
31023, due to the factor (I f /I s)

9. Numerical simulations
have confirmed this value of the ionization rate@5#.

The dynamics of ionization is very important for sho
pulses because it determines through its nonlinear~instanta-
neous! intensity dependence the dynamic of the filament.
stead, for longer pulses at higher fluxes such as those
for studies of relativistic self-focusing~RSF!, the ionization
is instantaneous and there is no need to include the ioniza
dynamics in the pulse propagation except for a specific tr
ment of ionization fronts.

A quick estimate of the filament radiusr f could be ob-
tained from our knowledge of RSF@14# since the beam ra
dius could not be smaller than the skin depth defined by

ld5c/vpe5~c/vpna
1/2!. ~45!

Knowing I f by Eq. ~44!, we getld570mm, not very far
from the observed filament radius.

To finish this part we note that the equality of the av
aged indexes in the filament implies also an exact cance
tion of the corresponding self-frequency shifts~SFS’s! by
definition. Thus there is a frequency shift clamping when
balance of indexes is achieved and the intensity remains
fixed. This explained why no additional SFS’s are observ
after the filament onset. In particular, there is no additio
averaged blueshift due to the ionization. However, even w
equality on the average the instantaneous IFS’s do not c
pensate each other, and thanks to the different power law
I P for np and in I for n2 , we have roughly the relationshi
for IFS’s: Dvp52pDvK , with therefore more blue SPM
than red one~since herep.1!, as is indeed observed.
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Knowing I f , the variation of the index is found to be o
the order of 231025, while the diffraction index, negligible
at the beginning of the focusing process, reaches a valu
the order ofnd5731027 in the filament forwf5200mm ~at
z5Lsf!. Thus nd remains weak as compared to nonline
indexes.

Also, we can justifya posteriori that the electron impac
ionization mechanism gives an effective collision time of t
order of a picosecond~the quiver energy associated withI f is
of the order of 50 eV! for full ~100%! ionization and thus is
negligible with respect to photoionization on the femtose
ond time scale.

3. Paraxial analysis

To be complete we perform a paraxial study to comp
more accurately the filament radius. We get new coup
equations forf andf:

]z82
2 f ~z8,z!

5S 12 f 4/t2E
2`

z

@b2~z8! f 24#e2~z2z8!/t2dz8D f 23

1pc1
2~kpr i !

2E
2`

z

@b2p~z8! f 22p22#dz8~e2H0!,

~46!

]z8wnl~z8,z!522/f 211/t2E
2`

z

@b2~z8!/ f 2#e2~z2z8!/t2dz8

2c1
2~kpr i !

2~12e2H0!, ~47!

H0~z8,z!5c1
2E

2`

z

@b2p~z8!/ f 2p#dz8.

c1
25spI 0

pt, kp5c/vpn .

FIG. 1. Radial shrinking of the light beam normalized radi
f (z,0) as a function of the propagation distancez. f is taken as the
time maximum of the initial pulse.z is normalized to the Rayleigh
lengthzr , with parametersq25200, A510239, t15t251, andC
50.
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The system of equations~46! and~47! has been integrated b
a fourth-order Runge-Kutta method, keeping thef function in
the integrals when required. We do observe the stabiliza
in z of the radiusf to a finite value when the intensity in
creases thanks to the balance of the two nonlinearities.
ure 1 shows the shrinking of the radius using figures relev
for the experiments presented in@2#. The simple condition
f 950 gives a good estimation of the radius reduction b
factor of 100 in agreement with the experimental case. F
ure 2 shows the spatial oscillations of the beam radius
different values of the initial coefficientA5pc1

2(kpr i)
2 en-

tering into the multiphoton ionization nonlinearity. We ca
notice the great sensitivity off to the value ofA.

A more thorough analysis to compute the filament size
done by writing at the filament edger 5r f the condition
dr f /dz50 ~see also@15#!, again neglecting diffraction. This
condition provides the relation

r f5ld~2Pf /Pc!
1/2. ~48!

FIG. 2. Sensitivity of f (z,0) as a function of the propagatio
distancez for various initial values ofA, the same parameters a
above otherwise.

FIG. 3. SpectraJv(0,z) in arbitrary units ofu for variousz with
the same parameters as in Fig. 1. In the abscissa we have plo
normalized wavelength (l2l0)/(Dl),Dl5l0

2/2pCt. ~a! z
50.01 ~solid line!, ~b! z50.02 ~dotted line!, and ~c! z50.03
~dashed line!
n

g-
nt
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Diffraction would bring another unity term as compared
the power ratio in Eq.~48!, as in Eq.~19! for Lsf . The con-
dition ~48! curiously does not determiner f or the filament
powerPf since we also have the relation

Pf5~pr f
2I f !. ~49!

Thus a compatibility condition is required, yielding

I f5Pc/2pld
2. ~50!

This last relation again gives eitherI f or the ionization
ratea. Using Eq.~45!, we find the energy into the filament t
be around 0.7–1 mJ. This is about the experimental va
allowing us to check the value ofPf5(Ef /t). Without time
compression the result isPf57 GW and r f52 – 3ld
5100– 200mm, not very far from the rough estimation~45!
and in good agreement with the observations. If we have
only a mere beam radius reduction, the final powerPf8 would
had been onlyPf85P0(r f /r 0)2, much weaker thanPf . Co-
operative action between neighboring rays and light conc
tration due to the nonlinearity involved seems to exist. Al
note thatPf is only a few timesPc in the stable filaments

d a

FIG. 4. SpectraJv(0,z) of u with the same parameters than
Fig. 3 except thatC521. ~a! z50.01 ~solid line!, ~b! z50.02
~dotted line!, and~c! z50.03 ~dashed line!

FIG. 5. SpectraJv(0,z) of u with the same parameters as in Fi
3 except thatC511. ~a! z50.01 ~solid line!, ~b! z50.02 ~dotted
line!, and~c! z50.03 ~dashed line!
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This could be due to spatial inhomogeneities in the ini
beam that prevent a larger amount of power from collaps
but the presence of hot spots in the initial profile could le
also to the creation of individual filaments of comparab
intensity that may interact together later on. The filamen
observed to be stable over more than 30 m, but it ends
disappearing due to energy ionization losses and, to a le
extent, due to the energy it radiates; see@2,16# for more
details about light conical emission by a Cherenkov eff
from an antiguidelike structure.
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4. Spectral analysis

Analytical analysis of spectra has been performed to
scribe qualitatively the observed spectral features, and
study will be published elsewhere. Here we limit ourselv
to presenting results of a numerical analysis consisting
solving Eqs.~46! and~47! for the radius and phase and the
computing the spectraJ given by expression~3!. A numeri-
cal Fourier transform of the spectra is performed, with t
use of the definitions~6!–~8! for the profileu:
Jv~r ,z!5U E
2`

1`

@u0~z!/ f ~z,z!#e2~r /r 0f !2/2ei @~v2v0!z1wNL~z,z!1~r 2/2! f z8/ f ~z,z!#dzU2

, ~51a!
re
uc-
used
nd
els
n to
-

in
vo-
ulse
c-

nd
of

ire
t

.
J.
Jv~0,z!5U E
2`

1`

@u0~z!/ f ~z,z!#ei @~v2v0!z1wNL~z,z!#dzU2

.

~51b!

Here we restrict ourselves to the central part of the be
computingJv(0,z) without the need to account for radia
convolution. Using the initial data profile given by Eq.~15!
for u, we obtain in Figs. 3–5, respectively, the spectra
different values ofz corresponding to different radius loca
tions in Fig. 1, each one for three different values of t
initial time chirp parameterC.

Figure 3 is of the no chirp case, while Figs. 4 and 5
obtained with a finite temporal chirp. In all cases one sees
increase of the redshifting of the central peak withz and the
growing of the self-phase modulation in the blue part of
spectrum as predicted and in qualitative agreement with
observations. We have checked also the increase of the
tral peak redshift with an increase of the parametery
5(t/2t2).

IV. CONCLUSION

In conclusion, we have given an explanation, relying o
simple analytic theory, for the formation and stable propa
m

t

e
n

e
e

en-

a
-

tion of light spatially localized structures into air that a
initiated by ultrashort and powerful laser pulses. These str
tures have been experimentally demonstrated. We have
a rather simple model capable of describing qualitatively a
quantitatively the filament characteristics. Improved mod
have to be developed in the future to make a compariso
numerical codes@17,18#, in particular to include group ve
locity dispersion effects~when useful! and to understand
possible substructures in filaments that may be probed
finer experiments. Above all, temporal aspects of beam e
lution also have to be adressed, since theory indicates p
time splitting@19# and a possible time compression of a fa
tor of 2 within the filament@20#.
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